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AIAA-2004-6018 
Kalman Filtering and the  

Attitude Determination and Control Task 
 

C1C Matthew J. Hale*, Dr. Paul Vergez‡ and Maarten J. Meerman§ 
USAFA, Department of Astronautics, USAF Academy  CO 80840 

 

Dr. Yoshi Hashida† 

Surrey Satellite Technology Ltd., University of Surrey, United Kingdom 
 

The attitude determination and control subsystem requirements of various payloads on 
the FalconSAT-3 satellite are stringent enough to demand some type of data processing in 
order to meet attitude determination requirements. This paper details one data filter, the 
Kalman filter, and more specifically, the 7-state and 6-state Kalman filters. Both filters 
prove to meet the attitude determination requirements successfully with little difference in 
achieved accuracy. However, the 6-state filter places much less computational demand upon 
the on-board computer. Based upon this data, the 6-state filter is a more logical choice for 
the FS3 attitude determination and control subsystem filter. However, there is still much 
analysis that needs to be completed before a final verdict might be reached. This paper 
examines both of these Kalman filters from a theoretical standpoint before examining 
practical implementation and concerns therein.  

Nomenclature 
( )xA   = attitude matrix (transition matrix) 

I   = inertia tensor 
N   = disturbance torques 
P    = covariance matrix 

nq    = quaternion 

BYLOT   = attitude matrix (transition matrix) 
x    = propagated “x” vector 
x̂    = corrected “x” vector 
x    = state vector 

nqδ   = differential quaternion 
δω   = differential angular rate 

I
Byω   = Euler body rates wrt. inertial, [ ]tzyx ωωω  
I
Loω   = Euler local orbital rates wrt. inertial, [ ]tozoyox ωωω  

oω   = mean motion of the Earth, [ ]to 00 ω−  
 

                                                 
* Cadet First Class, Department of Astronautics, PO Box 4008 USAF Academy CO 80841. 
‡ Professor, Department of Astronautics, USAF Academy CO 80840. AIAA Associate Fellow 
§ Schriever Professor, Dept. of Astronautics, USAF Academy CO 80840. AIAA senior Member 
† Chief ADCS Engineer, Surrey Satellite Technology Ltd., Guildford Surrey GU2 7XH, United Kingdom. 
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Figure 1. EKF Mechanics, One Measurement 

 

I. Introduction 
N 1990 the Space Systems Research Center (SSRC) was founded to enable cadets at the United States Air Force 
Academy to fully experience the complexity of satellite design, construction, and operation. After several 
successful balloon-based upper atmosphere experiments, SSRC initiated the development of operational satellites 

for Air Force research experiments. In 1997, SSRC’s FalconGold satellite bore a GPS Signal Experiment into an 
elliptical orbit above the GPS constellation. FalconGold successfully completed its mission of collecting data 
showing that GPS signals can be received above the GPS constellation and be utilized for orbit determination. 
FalconSAT-1 was launched in 2000 to assess the hazards of spacecraft operations in the wake of larger bodies. 
However, an in-orbit power failure prevented the successful completion of this mission. FalconSAT-2 was designed 
to gather data concerning the effect of upper-atmospheric plasma bubbles upon GPS signals. Originally designed for 
a 2003 launch in conjunction with the Space Shuttle Hitchhiker program, the satellite is currently being re-
engineered for an alternate launch vehicle due to the probable cancellation of the Hitchhiker program.  

FalconSAT-3 (FS3), SSRC’s current satellite design endeavor, is a 50 kg microsatellite being developed by 
cadets and faculty at the Air Force Academy. FS3 will carry several experimental payloads to conduct DoD 
research. One of these, the Micro Propulsion Attitude Control System (MPACS), is an attempt to demonstrate 
pulsed plasma thruster (PPT) propulsion technology. The Flat Plasma Spectrometer (FLAPS) and the Plasma Local 
Anomalies Noise Environment (PLANE) experiments are further attempts at characterizing the local plasma 
environment. A shape memory composite gravity gradient boom and a shock ring vibration suppression system 
comprise the final two experimental payloads of FS3. The satellite is scheduled to be launched in the Fall of 2006 
for a projected design to end-of-life cost of approximately $2 million.  

II. FS3 ADCS Architecture 
The primary challenge for the FS3 Attitude Determination and Control System (ADCS) team is to develop the 

software and techniques necessary to achieve the derived attitude control requirements. As it turns out, the FLAPS 
experimental payload has the most stringent ADCS requirements, demanding attitude control to within five degrees 
of the ram direction with respect to the local orbital frame, as well as attitude knowledge to within one degree. FS3 
is the Air Force Academy’s first attempt at achieving three axis attitude control.  

FS3 attitude sensors include one Billingsby Fluxgate magnetometer and 4 AeroAstro medium sun sensors. In 
conjunction with on-board software (some of 
which is detailed in this paper), these sensors 
will provide sufficient attitude knowledge to 
meet the derived requirements. Attitude actuators 
include a gravity gradient boom for passive 
attitude control, as well as three magnetorquers 
for active attitude control. The boom is a 2.84 
meters long (to the center of gravity) composite 
thermal boom with a 7.8 kilogram tip mass, 
creating a transverse moment of inertia of 67.4 
kg-m-s2.  

As part of the ADCS task, a Kalman filter 
will be implemented to process sensor attitude 
date. Generally speaking, the Kalman filter is a 
recursive optimization algorithm that generates 
an estimate based upon potentially noisy 
observation data. At the most basic level, the 
Kalman filter is fundamentally an optimization 
problem that can be applied across many 
disciplines to predict the behavior of systems. In 
astronautics, the Kalman filter is often 
implemented to simplify and expedite the ADCS 
task. For FS3, the filter must balance ADCS 
sensor measurements with the expected attitude generated by an on-board orbit propagator. For several reasons, the 
Kalman filter is implemented in this process rather than other filtering techniques. Due to on-board computer (OBC) 

I 
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limitations, data must be cyclically processed and discarded, rather than being stored for access during each 
estimation iteration as with other 

filtering techniques. The Kalman filter is ideal for processing large amounts of data in this fashion. Attitude 
determination presents another difficulty that is addressed by the Kalman filter. In the attitude determination task, 
three independent reference parameters are needed to determine attitude. Each vector measurement provided by the 
satellite sensors yields two reference parameters. Therefore, the typical requirement for three-axis attitude 
determination is two vector measurements. Attitude determination with two measurements is overdetermined while 
attitude determination with one parameter is underdetermined. The Kalman filter can solve either the 
overdetermined or the underdetermined cases, allowing three-axis attitude determination with either both sun 
sensors and magnetometers or solely magnetometers. The Kalman filter is able to solve the underdetermined case 
because an on-board orbit propagation model is part of the filter. This filter utilizes this model to allow three-axis 
attitude determination with only one vector measurement. In short, the robustness of the Kalman filter enables it to 
be applied to the ADCS task.  

The estimation of the Kalman filter operates in two primary cycles, propagation and correction. During the 
propagation cycle, the filter propagates the state of the system, using a system model to predict the state of the 
system one time step in the future. The correction cycle inputs measurements of the system state and utilizes these 
observations to correct for differences between the state propagated from the system model and the measured 
satellite state. However, the correction cycle encounters particular difficulty due to the fact that some amount of 
noise and imprecision is embodied in the measurements themselves. Therefore, the primary task of the Kalman filter 
correction cycle is to balance the state propagated from the system model with the system state derived from 
measurements utilizing optimization theory. This correction process yields a ‘corrected’ estimate of the system state. 
As the filter iterates, this corrected state estimate is utilized as the initial condition for the Kalman filter propagation 
cycle.  

Figure 1 offers a pictorial representation of basic Kalman Filter dynamics. Notice that the covariance matrix is 
propagated and corrected as well. This matrix contains information essential to the optimization process, and 
therefore must be included in the propagation – correction process.      

However, FS3 attitude knowledge hardware includes both a magnetometer and a sun sensor. Hence, two 
measurements are entered to the filter when the satellite is illuminated. This does not significantly affect the basic 
filtering process, yet it merits discussion. Magnetometer measurements are assumed less accurate than the sun 
sensor measurements. Therefore, magnetometer measurements are first entered into the correction cycle of the EKF, 
resulting in a ‘corrected’ state. Subsequently, 
before returning to the propagation cycle, the sun 
sensor measurements are entered into a second 
iteration of the correction cycle, yielding the 
further ‘corrected’ state. The diagram below 
offers a pictorial representation of the dynamics 
of dual measurement input to a Kalman Filter.  

For ADCS, Kalman filtering involves 
propagation of the satellite attitude and 
covariance matrices using both Euler’s moment 
equations and a basic knowledge of the 
disturbance torques acting upon the satellite. 
Subsequent to this propagation, the Kalman filter 
adjusts the propagated attitude and covariance 
matrices based upon the measurement vector(s). 
Because the attitude motion of FS3 will be 
nonlinear, extended Kalman filters (EKF) will be 
necessary to accommodate nonlinearities. This 
paper will detail the various filtering schemes 
explored for optimal application in the FS3 
ADCS task.  

III. Seven State EKF 
The EKF most commonly implemented in the ADCS task is the 7-state EKF. This is due, in part, to the relative 

ease of 7-state mathematics in comparison with other Kalman filters that have been utilized for spacecraft 

Figure 2.EKF Mechanics, Two Measurements
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operations. In addition, the 7-state filter has well-established reputation as an effective and reliable estimation 
technique.  

A. Theoretical Detail 
For the 7-state filter, the state vector defines not only the attitude of the satellite, but also the rates at which the 

attitude is changing. The 7-state EKF state vector is comprised of the four-element quaternion attitude vector 
combined with the three-element body rates vector, with respect to the inertial frame ( )I

Byω . Symbolically, this state 
vector can be represented as  

 [ ]tzyxqqqqx ωωω4321=  (1) 

During the propagation cycle of the EKF, the quaternion and angular rate components of the state vector are 
propagated separately. The quaternions are propagated forward in time utilizing the basic quaternion dynamic 
equation, specifically  

 qq Ω=
2
1

&  (2) 
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 oBYLOlo T ωωω −=  (4) 

 [ ]tozoyox
I
Lo ωωωω =  (5) 

 [ ]too 00 ωω −=  (6) 

The body rates are propagated forward in time utilizing Euler’s Moment Equations, specifically 

 ωωω INI ×−=&  (7) 

Simple numerical integration is utilized to propagate the quaternions and body rates one time step in the future.  
With these definitions in mind, the basic mathematical process for 7-state Kalman Filtering can be detailed 

below. Note that several equations integral to the operation of a Kalman Filter are here overlooked in order to 
simplify the presentation. Many others have presented the EKF in much more detail, and the omitted equations may 
be found in these works.*   

                                                 
* Hashida, Yoshi. ADCS for Future UoSat Standard Platform: REVISION 2. SSTL Internal Technical Note.  

SSTL, Guildford, Surrey, United Kingdom: 2004.  
   Plessis, Roger M. Poor Man’s Explanation of Kalman Filtering or How I Stopped Worrying and Learned to Love  

Matrix Inversion. Rockwell International, CA: June 1997.  
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B. 7-State Kalman Filter Mathematical Process 
[ ]tzyxqqqqx ωωω4321=     

P  - covariance matrix (7 x 7)       K  - Kalman gain matrix  (7 x 3) 
Φ  - state transformation matrix (7 x 7)     R  - measurement noise covariance matrix (3 x 3) 
Q  - process noise covariance matrix (7 x 7)   H  - observation matrix (3 x 7) 
F  - mathematical convention (7 x 7)     t  - time 
z  - measurements of system state, either sun-sensor or magnetometer 

byz  - body referenced measurements, directly from onboard sensors 

loz  - orbit referenced measurements, from orbit model prediction (IGRF) 
 
A. Propagation Cycle 
   1. Covariance Propagation 
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   2. Propagate State 
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B. Correction Cycle 
   1. Compute Observation Matrix  
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2. Compute Kalman Gain Matrix 

 [ ] 1−
+= k

t
kkk

t
kkk RHPHHPK    

  3. Update State 
 ( )loBYLObykkk zTzKxx −+= +++ 111ˆ   
  4. Update Covariance 
 ( ) 111771

ˆ
++++ −= kkkxk PHKIP   

This basic EKF process has introduced several variables that merit further explanation. The covariance matrix 
( )P  essentially is a time-referenced estimate of the accuracy of both the system model and the measurements. The 
correction cycle depends heavily upon these accuracies in order to determine how much to ‘trust’ either the 
propagated state or the entered measurements. The state transformation matrix ( )Φ  is an approximation of the 
change that the state undergoes over the specified time interval. The process noise covariance matrix ( )Q  is derived 
from the expected error in the filtering process. The observation matrix ( )H  is a measure of how dependent the 
measurements are upon the state of the system. The measurement noise covariance matrix ( )R  entails the expected 
error in the states themselves, derived from the precision of the system model.  

 It is important to note several key aspects to the filtering process. Notice that the covariance matrix is 
propagated in addition to the actual state. In the cyclic pattern of the EKF, the filter utilizes only the covariance 
matrix and state from the previous iteration, which means that a relatively small amount of stored data points will 
enable filter operation. This greatly reduces the computational demand of the filter. This is especially useful because 
the covariance matrix and the state vector contain all the information concerning the status of the system that is 
necessary for accurate system modeling.  

Another aspect worthy of note requires a basic understanding of the onboard application of the EKF. Onboard 
FS3, the EKF will input sensor measurements every five seconds. Since the correction cycle occurs only once for 
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each set of measurements, the propagator must propagate the system state five seconds in the future, the point at 
which the next set of measurements will be entered. However, the propagation cycle entails the numerical 
integration of the system state over this time 
period, which is the heaviest computational 
demand placed by the system on the onboard 
computer. In order to reduce this computational 
demand, a simplified numerical integration 
technique may be introduced, as long as the 
resultant error is within acceptable bounds. 
Integration time step may also be decreased in 
order to reduce the computational demand, 
contingent upon acceptable error bounds.  

As noted previously, if sun sensor 
measurements are entered to the filter in addition 
to the magnetometer measurements, the 
correction cycle must be repeated twice. The first 
iteration will update the state derived from the 
most recent propagation. The second iteration, 
utilizing sun sensor measurements, will update 
the ‘corrected’ state derived from the first 
iteration of the correction cycle. Both the single 
and double correction EKF cycles are 
represented pictorially below.   

IV. Six State EKF 
The 7-state EKF presents an optimal means of attitude control for small satellites. However, the 7-state EKF 

necessarily involves many 7 x 7 matrices, placing a fairly heavy computational demand upon the onboard computer 
of the typical microsatellite. Hence, any means of significantly reducing the computational intensity of the EKF 
while not sacrificing operability is highly desirable.  

Recentely, Surrey Satellite Technology Ltd. developed a 6-state EKF that attempts to realize this goal. 
Developed for BilSAT, a Turkish satellite member of the international cooperative effort of the Disaster Monitoring 
Constellation, initial development of this 6-state EKF began in 2003. Currently, BilSAT is the only satellite known 
to the author to have flown this ADCS software.* 

A. Theoretical Detail 
In order to understand the theory underlying the development of the 6-state EKF, it is first necessary to touch 

upon some fundamental quaternion definitions. In quaternion mathematics, the ⊗  operator is typically defined such 
that 
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where both p and q are quaternion vectors. This definition is intended to allow 

 ( ) ( ) ( )qpAqApA ⊗=  (9) 

                                                 
* Hashida, Yoshi. BilSat Attitude Estimator Mathematical Specification: REVISION 2. SSTL Internal Technical  

Note. SSTL, Guildford, Surrey, United Kingdom; 2004.  

Figure 3. EKF Cycle
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where ( )A  is an attitude (transformation) matrix. This relationship proves pivotal to the derivation of many of the 
relationships utilized in the 6-state EKF. Another convention utilized extensively in the 6-state EKF is qδ andδω , 
the differential error notation, which represent small deviations in the quaternions and body rates, respectively. The 
formal definition of these parameters is  

 
δωωω

δ
+=
⊗=

+

+

kk

kk qqq

1

1  (10) 

The δωω −  relationship is somewhat intuitive and simply understood, whereas the qq δ−  relationship may not 
be quite so intuitive. However, the qq δ−  relationship as expressed above is very similar to the simple δωω −  
relationship, just made more complex by quaternion mathematics.  

Strictly speaking, true quaternions are always normal, that is,  

 12
4

2
3

2
2

2
1 =+++ qqqq  (11) 

In order for the qq δ−  relationship to hold and the ⊗ operator apply, qδ  must be assumed to be a true quaternion. 
(As the filter converges, this assumption becomes essentially valid.). Therefore, it follows that the differential 
quaternions apply to Eq. 11. Namely, that 

  12
4

2
3

2
2

2
1 =+++ qqqq δδδδ  (12) 

This normalization allows any three qδ terms to necessarily define the fourth,  

 2
3

2
2

2
14 1 qqqq δδδδ −−−+=  (13) 

Note that this assumption defines 4qδ  as positive. This is acceptable since 4qδ  is a differential quaternion 
specifying the error associated with the estimated quaternions, and the magnitude of the differential quaternion is the 
essential information derived from the differential quaternions. It is important to note that 4qδ  is a differential 
quaternion; therefore, it does not directly specify the attitude of a spacecraft. This assumption (that the differential 
error quaternions meet the normalization criteria) is a significant assumption allowing the development of the 6-state 
EKF.  

In the 6-state EKF, the auxiliary state vector is introduced, defined as the differential state, specifically  

 [ ]tzyxqqqy δωδωδωδδδ 321=  (14) 

Note that due to the assumption made in Eq. 13, the auxiliary state vector is comprised of only 6 elements. Based 
upon the normalization assumption described above, and if higher order terms are ignored (linearization), it can be 
demonstrated that 0321 ≈== qqq δδδ . This relationship, in conjunction with the normalization assumptions, can 
be applied with care to facilitate the simplification of a 7-state filter to a 6-state filter.      

Application of the definitions in Eq. 10 to the 7-state EKF equations allows the development of the following 
filtering process. Note that the cross matrix definition is utilized extensively throughout this process. The cross 
matrix is defined specifically as:  
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Two distinct state vectors are utilized in the 6-State EKF process. The true state is comprised of exactly the same 
elements as in the 7-State EKF process, specifically  

 [ ]tzyxqqqqx ωωω4321=  (16) 

The 6-State filter also introduces the differential or auxiliary state, which is  

 
[ ]tzyxqqqy δωδωδωδδδ 321=

 (17) 

Note that the auxiliary state has six elements rather than seven. This plays a critical role in reducing the 
computational demand of the 6-State EKF.  

 
B. 6-State Kalman Filter Mathematical Process 

[ ]tzyxqqqqx ωωω4321=    [ ]tzyxqqqy δωδωδωδδδ 321=
 

{ }qδ  -  differential quaternions       { }δω  -  differential body rates 
P  - covariance matrix  (6 x 6)       K  - Kalman gain matrix (6 x 3) 
Φ  - state transformation matrix (6 x 6)    F  - mathematical convention (6 x 6) 
Q  - process noise covariance matrix (6 x 6)   H  - observation matrix (3 x 6) 
R  - measurement noise covariance matrix (3 x 3) t - time 
z  - measurements of system state, either sun-sensor or magnetometer 

byz  - body referenced measurements, directly from onboard sensors 

loz  - orbit referenced measurements, from orbit model prediction (IGRF) 
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A. Propagation Cycle 
   1. Covariance Propagation 
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  2. Propagate State 
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B. Correction Cycle 
   1. Compute Observation Matrix  
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It is important to note several aspects of the 

6-state EKF process at this point. In addition, 
key differences from the 7-state EKF will be 
highlighted. Notice that both covariance and the 
true state are predicted in the propagation cycle. 
However, all matrices involved in the covariance 
propagation are 6 x 6, which significantly 
reduces the computational load upon the filter.  

Although this correction cycle may appear 
very similar to that of the 7-state EKF, they are 
markedly different. In the 7-state EKF, the state 
vector is both propagated and directly updated. 
That is to say, after propagation of the state 
vector, the correction cycle acts directly upon the 
state vector. The 6-state EKF process is slightly 
more complex. The propagation cycle of the 6-
state EKF inputs the true state and propagates Figure 4. 6-State EKF Cycle 
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this vector forward in time. The auxiliary state vector itself is not propagated. In the 6-state correction cycle, the 
auxiliary (differential) state vector is calculated and then utilized to update the true state. Therefore, these 
calculations primarily involve the auxiliary state. In this cycle, the true state is only utilized to calculate the attitude 
matrix and in the last step to update the true state. This dependence upon the auxiliary state rather than the true state 
plays a significant role in reducing the computational demand of the 6-state EKF. The 6-state EKF process may be 
represented pictorially as below.  

The 6-state EKF, while mathematically more complex, reduces the covariance matrix ( )P , state transition 

matrix ( )Φ , F matrix, and the process noise covariance matrix ( )Q  from 7 x 7 matrices to 6 x 6 matrices. In effect, 
this eliminates 13 elements for each matrix. In 
addition, the observation matrix ( )H  is reduced 
from a 3 x 7 to a 3 x 6, and the Kalman gain matrix 
( )K  is reduced from a 7 x 3 to a 6 x 3. This 
reduction in size is the great benefit of the 6-state 
EKF. By assuming normalization and linearization 
of the quaternion differential error, a much less 
computationally intense EKF is possible. Note that 
computational demand and processing speed have 
not yet been empirically determined for either 
filter. However, the table below demonstrates the 
sheer magnitude of the reduction in the number of 
matrix elements, which should correlate with the 
actual computational speed.    

V. Filter Implementation 
In order to examine its operability and performance, both the 6-state and 7-state EKF were programmed in the 

computer language C. The data presented hereafter is primarily a summary of conclusions reached based upon a 
series of analyses. It is intended to demonstrate the operability of the implemented EKFs as well as to provide a 
basis for comparison of these EKFs with one another. In addition, issues that are important for practical 
implementation yet unsuitable for the EKF theory discussion will be presented here.  

In order to test the EKF before launch, a simulation of the operating environment of the satellite must first be 
developed. This simulation is required in order to generate realistic measurements for the EKF to utilize as input. 
The simulation utilized to generate the input measurements for all analyses detailed herein is a third generation 
flight-tested orbit propagator. It has been used on various satellites engineered by Surrey Satellite Technology Ltd. 
This orbit propagator generates simulated magnetometer and sun sensor inputs in two different regards. First, the 
orbit propagator generates these magnetometer and sun sensor inputs in the local orbital (with respect to inertial) 
frame. These filter inputs are what is considered the orbit propagator ‘predicted’ values. This input from the 
simulation will be necessary during actual satellite operations. The second set of input data generated by the orbit 
propagator is a set of ‘measured’ values. These values simulate measurement input from the magnetometer and sun 
sensor, and so this set of input is in the body (with respect to inertial) frame. Since this second set of inputs, the 
‘measurement’ inputs, is only simulating values that will come from onboard sensors during the actual operation of 
the satellite, this data will not be generated by the simulator during actual satellite operations.  

In addition, a standard of comparison is necessary in order to determine the veracity of the EKF results. Another 
well-tested program developed by Surrey Satellite Technology Ltd. was utilized for this purpose. This simulation is 
an attitude propagator, which models the actual satellite dynamics and outputs Euler angles and Euler rates over a 
specified period of time. This simulation simply uses Euler’s Moment Equations and the quaternion dynamic 
equation to propagate expected angles and rates. Due to the construction of this model, it is quite simple to simplify 
the model to discount all disturbance torques etc. or to precisely model gravity gradient (including boom 
deployment), magnetic (including commanded magnetic moment), drag, reaction wheel effects, and other 
disturbance torques.  

It is appropriate to mention several practical considerations of both EKFs implementation at this point. FS3 will 
be operating in a 35˚ inclined circular LEO at an altitude of 560 km. The spacecraft is estimated to have a mass of 
47.2 kg and essentially be configured as a cube 0.46 m on a side with a 2.84 m (to the center of gravity) gravity 
gradient boom and 7.8 kg tip mass. The satellite will take attitude measurements every five seconds and requires 1˚ 
attitude knowledge while only 5˚ attitude control accuracy is required. The microsatellite is optimally nadir-pointing 

   
7 -
State   

6 -
State   

   Elements  Elements
x  (7x1) 7 (7x1) 7 
y  ~ ~ (6x1) 6 
P  (7x7) 49 (6x6) 36 
Φ  (7x7) 49 (6x6) 36 
F  (7x7) 49 (6x6) 36 
Q  (7x7) 49 (6x6) 36 
H  (3x7) 21 (3x6) 18 
K  (7x3) 21 (6x3) 18 
   Total 245 Total 193 

Table 1. EKF Element Comparison 
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and velocity vector tracking. These requirements specify several operating constants for the EKFs, specifically the 
mean motion ( )oω , the measurement input frequency, and the radius of the orbit. These and a summary of other 
operating constants are presented here.  
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Note that the assumed integration time step ( )intt∆  is 1 second unless otherwise specified. In addition, the 
definition of the body frame for FS3 defines the unit zenith vector ( )ui as shown. The inertia tensor is boom-
deployed. These operating constants apply to all analyses unless otherwise noted.  

Several other practical considerations merit mention. The integration in the state propagation is accomplished by 
numerical integration. This cyclic process is computationally intensive. Therefore, to reduce the computational 
demand without sacrificing significant accuracy, an Adam’s 2nd order numerical integrator will be implemented 
rather than a more complex but more accurate integrator. Reference the integration analysis completed by the author 
for further discussion of the numerical integrator. Another practical consideration concerns the nature of the 
computer code. Since the code will be implemented on a satellite, the code must be extremely robust. Most 
importantly, the ADCS computer code must not crash the satellites’ onboard computer at all expenses. Therefore, 
error checks are conducted many times throughout each cycle of the EKF. If an error is detected, the ADCS 
algorithm is immediately exited and a message relayed to satellite operators to allow human operators to deal with 
the problem rather than the onboard computer crashing as a result of the error. Finally, the nature of the assumptions 
underlying the development of the EKF permits a small amount of error to creep into the quaternion calculations. In 
order to negate this error, the quaternions must be normalized after every instance where they are calculated. This 
includes both the quaternion calculation in the state propagation step and in the state update step.  

Finally, several other initialization parameters deserve an explanation. The covariance matrix ( )P  embodies an 
approximate error associated with attitude estimates. The first three (6-state)/four (7-state) diagonal elements of the 
covariance matrix represent the estimated error of the quaternions, while the next three diagonal elements give the 
estimated error of the angular rates. It is important to note that the covariance matrix is merely an initialization; over 
time, the matrix changes as the EKF converges. The process noise covariance matrix ( )Q  is another initialization 
parameter that deserves mention. The process noise covariance matrix contains information relating an estimate for 
the error associated with the system equations. From a strict mathematical standpoint, the process noise covariance 
matrix also changes with time. However, these changes can be ignored due to their small magnitude. The first three 
(6-state)/four (7-state) diagonal elements of the process noise covariance matrix represent the error associated with 
the quaternion dynamic equation, while the next three diagonal elements are the estimated error associated with 
Euler’s moment equations. Note that to rigorously implement this matrix, these error estimates are the subject of 
several mathematical operations. The purpose of these operations is beyond the scope of this paper, but for 
reference, the process noise covariance matrix error estimates for all cases is 41 −e for both quaternions and rates. 
Lastly, the measurement noise covariance matrix ( )R  contains the error expected to be associated with 
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measurements. Note that the measurement noise covariance will change as the sun sensor is switched on and off. 
However, the measurement noise covariance is otherwise constant over time.  

VI. Extended Kalman Filter Analysis 

A. 7-State Analysis 
The following initialization parameters were utilized for 7-state analysis.  
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The Kalman filter was run for a single twenty-four hour period, with the initial conditions detailed previously. 
During this period, the sun sensor was switched off. In other words, all of these graphs present the case where 
magnetorquers are the sole attitude determination sensors. In addition, all measurements are being normalized to 
negate possible effects of the vector magnitude. Finally, gravity gradient disturbance torque was the only 
disturbance modeled.  

The angular estimation error is presented graphically below. Note the distinctive ‘pulsating’ effect of the 7 State 
angular estimation error plot. These pulses arise from the magnetic field as the satellite orbits above the Earth. In 
fact, if the pulses are tallied, there are fifteen, which corresponds to the number of times the satellite orbits the earth 
in a single day. (At an altitude of 560 km, there are 15.02 orbits in solar day and 14.98 orbits per sidereal day). 
These pulsations are therefore expected, due to the variation in the magnetic field around the Earth and its 
interaction with the spacecraft dipole. In addition, the 7-state rate estimation error is presented here. Tabulated error 
magnitudes are presented below the graphs.  
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Figure 5. 7-State Angular Est. Error 
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Figure 6. 7-State Angular Est. Error (Detail) 
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Figure 7. 7-State Rates Est. Error 

-0.00075

-0.00050

-0.00025

0.00000

0.00025

0.00050

0.00075

19 Thu
Aug 2004

3AM 6AM 9AM 12PM 3PM 6PM 9PM

FalconSat3: ADCS Log File
7 State Rates Estimation Error (Detail)

Time

Wx Estimation Error Wy Estimation Error

 
Figure 8. 7-State Rates Est. Error (Detail) 

 
For the graphs presented above, notice that 
the filter takes on the order of 1-1.5 hours to 
converge. This represents the time it takes 
from switching the filter on to the time at 
which the filter provides an accurate attitude 
estimate. The tabulated values will primarily 
be utilized for comparative purposes in 
relation to the 6-state results. Note, however, 
that the magnitude of the RMS error results 
indicates that the angular error is 
approximately 0.16 and the rate error is 
about 0.0018, both in degrees. These results 
fit within the bounds specified by the 
derived attitude requirements.  

Table 2. 7-Sate Error Compilation 
 Avg d STD d RMS d 
Roll (deg): 1.28E-03 6.99E-02 6.99E-02 
Pitch (deg): -7.25E-03 3.69E-02 3.76E-02 
Yaw (deg): -1.62E-02 1.38E-01 1.39E-01 
Wx (deg/s): -2.04E-05 1.52E-04 1.53E-04 
Wy (deg/s): -4.61E-05 1.35E-04 1.42E-04 
Wz (deg/s): -1.83E-06 1.74E-03 1.74E-03 
        
  Mag of Err. Mag of Err. Mag of Err. 
Angles (deg): -7.40E-03 1.59E-01 1.60E-01 
Rates (deg/s): -2.28E-05 1.75E-03 1.76E-03 
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B. 6-State Analysis 
The following initial parameters were utilized for the 6-state EKF.  
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The 6-state angular estimation error is presented below. Notice that the 6-state angular estimation error plot does not 
demonstrate periodic variation as the 7-state angular estimation error plot did. This is somewhat unexpected, as it 
indicates that the 6-state EKF is able to produce slightly more accurate angular attitude estimate than the 7-state 
EKF. Further testing is required to test the veracity of this claim. The 6-state rate estimation error plots are presented 
below as well. Tabulated errors are presented below the graphs.  
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Figure 9. 6-State Angular Est. Error 
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Figure 11. 6-State Rates Est. Error 



 15 
American Institute of Aeronautics and Astronautics 

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

3PM
18 Wed Aug 2004

6PM 9PM 19 Thu 3AM 6AM 9AM 12PM

FalconSat3: ADCS Log File
6 State Rates Estimation Error

Time

Wx Estimation Error Wy Estimation Error

 
Figure 10. 6-State Angular Est. Err. (Detail) 
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Figure 12. 6-State Rates Est. Err. (Detail) 
 

Notice that the magnitude of the RMS error is within the derived attitude knowledge requirements demanded by 
the FLAPS payload ( )o1± . In addition, note that the magnitude of the RMS error of the 6-state EKF and the that of 
the 7-state EKF are almost exactly identical.  

C. Analysis To Do 
Much work remains to be accomplished from the filtering standpoint of FS3.  

• Program a constant gain filter for analysis and comparison 
• Perform optimization analyses 

o Initial Covariance Matrix (P) 
o Observation Noise Covariance Matrix (R) 
o Process Noise Covariance Matrix (Q) 
o Boundaries for effects of measurement noise 

• Minimize code size, memory allocation, computational demand,  
• Maximize computational speed, redundancy, robustness 

Once all of these tasks are accomplished, the selected filter will be tested on data derived from PICOSat. PICOSat is 
a United States Air Force satellite that is solely controlled by Air Force Academy cadets trained to do so. Data from 
PICOSat will be utilized due to the 
similarity between PICOSat and FS3. 
PICOSat is a nadir-pointing, velocity vector 
tracking microsatellite with similar mass and 
inertia tensor values. In addition, PICOSat 
utilizes a gravity gradient boom and 
magnetorquers for control, with sun sensors 
and magnetometers for attitude sensors. 
From the ADCS standpoint, these qualities 
make PICOSat very closely related to FS3. 
Therefore, telemetry will be downloaded 
from the satellite and then entered into both 
EKFs to determine if their output accurately 
predicts the attitude dynamics of PICOSat. 
This test will lend credence to the validity of 
the software.   

VII. Conclusions 
The ADCS requirements of various payloads on FS3 are stringent enough to demand some type of data 

processing in order to meet attitude determination requirements. This paper detailed Kalman filtering, and more 
specifically, the 7-state and 6-state Kalman filters. Both filters proved to meet the ADCS attitude determination 
requirements successfully with little difference in achieved accuracy. However, the 6-state filter places much less 
computational demand upon the on-board computer. Based upon this data, the 6-state filter is a more logical choice 
for the FS3 ADCS filter. However, there is still much analysis that needs to be completed before a final verdict 
might be reached.  

 AVG d STD d RMS d 
Roll (deg): 6.45E-03 3.07E-02 3.13E-02 
Pitch (deg): -1.62E-03 4.70E-02 4.71E-02 
Yaw (deg): -3.24E-02 1.43E-01 1.47E-01 
Wx (deg/s): 1.04E-05 1.53E-04 1.53E-04 
Wy (deg/s): -5.45E-05 1.49E-04 1.58E-04 
Wz (deg/s): 3.68E-05 1.94E-03 1.94E-03 
        
  Mag of Err. Mag of Err. Mag of Err. 
Angles (deg): -9.20E-03 1.54E-01 1.57E-01 
Rates (deg/s): -2.43E-06 1.95E-03 1.96E-03 

Table 3. 6-State Error Compilation



 16 
American Institute of Aeronautics and Astronautics 

Appendix A. Expanded 7-State Results 

-3

-2

-1

0

1

2

3

19 Thu
Aug 2004

3AM 6AM 9AM 12PM 3PM 6PM 9PM

FalconSat3: ADCS Log File
7 State Angular Estimation Error

Time

Roll Angle Estimation Error (Normalized) Pitch Angle Estimation Error (Normalized)

 

Figure 13. 7-State Angular Estimation Error, Expanded View 
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Figure 14. 7-State Angular Estimation Error (Detail), Expanded View  
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Figure 15. 7-State Rates Estimation Error, Expanded View 
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Figure 16. 7-State Rates Estimation Error (Detail), Expanded View
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Appendix B. Expanded 6-State Results 
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Figure 17. 6-State Angular Estimation Error, Expanded View 
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Figure 18. 6-State Angular Estimation Error (Detail), Expanded View 
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Figure 19. 6-State Rates Estimation Error, Expanded View 
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Figure 20. 6-State Rates Estimation Error (Detail), Expanded View 
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